
EQUIVARIANT HOMOLOGY OF STACKS

ADEEL A. KHAN

Abstract. We use sheaf theory and the six operations to define and
study the (equivariant) homology of stacks. The construction makes
sense in the algebraic, complex analytic, or even topological categories.

Introduction

Let X be a locally compact and Hausdorff topological space. The singular
homology groups H∗(X;Z) can be described via sheaf theory. Namely, one
has the functors f! and f ! of compactly supported direct and inverse image
along the projection f ∶ X → pt on derived categories of sheaves of abelian
groups. By Grothendieck–Verdier duality, one has

H∗(X;Z) ≃ H−∗(f!f
!Z).

Similarly, Borel–Moore homology1 is computed by the complex f∗f
!Z. More-

over, the various operations and properties of both variants fall out of the
yoga of the six functors right away. We refer to [Gode, KS] for background
on sheaves and the six functor formalism2 and [Bre, Chap. V] for the sheaf-
theoretic point of view on homology and Borel–Moore homology.

In this note we are interested in generalizing the above story to define
G-equivariant homology, when G is a topological group acting on X. At
the same time, we also want to allow X to be a topological Artin3 stack.
The language of ∞-categories makes it easy to extend derived categories to
stacks, and the six operations are also available in that setting by [Kha5]
(see also [LO, LZ, KV], and our review in Sect. 1). The G-equivariant
homology of X is the relative homology of the induced map of quotient stacks
g ∶ [X/G]→ BG ∶= [pt/G], and similarly for the Borel–Moore variant. That
is to say,

HG
∗
(X;Z) ∶= H−∗(BG,g!g

!Z), HBM,G
∗ (X;Z) ∶= H−∗(BG,g∗g

!Z).

As above, all desired properties of these constructions are derived immediately
from the six functor formalism. Of course, they also specialize to homology
theories in the complex analytic and algebraic categories.4

One motivation to write this note came from work of D. Joyce (see [Joy]),
who formulates certain wall-crossing formulas in enumerative geometry in

Date: 2025-04-03.
1a.k.a. locally finite homology
2More modern treatments such as [Vol] allow us to treat unbounded derived categories,

which is why we do not need to assume finiteness of cohomological dimension above.
3or even higher Artin
4For readers uncomfortable with topological stacks, we note that it is not necessary to

pass through underlying topological stacks; see (1.2.2).
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terms of vertex algebra structures defined on the homology of certain (al-
gebraic) moduli stacks. This in particular requires a suitable equivariant
homology theory as above. See also forthcoming work of A. Bojko [Boj], who
uses our definition to refine Joyce’s vertex algebras.5

Let us also note that the considerations of this paper make sense in any
suitable six functor formalism6. For example, one could use the machinery
of motivic sheaves (see [Kha1, App. A] or [Kha5, §7]) to define equivariant
motivic homology together with a cycle class map to equivariant singular
homology. Motivic homology can be thought of as “compactly supported”
version of (higher) Chow groups (≈ motivic Borel–Moore homology) and,
unlike the latter (see [Joy, Rem. 2.3(b)]), can be used to define a Chow type
lift of Joyce’s vertex algebra structure.

Acknowledgments. I am grateful to Arkadij Bojko and Dominic Joyce for
that discussions that led to this note as well as feedback on previous drafts.
I also thank Charanya Ravi for useful discussions.

1. Sheaves

1.1. Topological stacks.

1.1.1. Let Spc denote the category of topological spaces, always implicitly as-
sumed locally compact and Hausdorff. We say that a morphism of topological
spaces is smooth7 if it is a topological submersion.

1.1.2. Let Stk denote the ∞-category of topological stacks, i.e., sheaves of
∞-groupoids on Spc. We say that a topological stack X is 0-Artin if it is a
topological space. We define 1-Artinness as follows.

(i) A morphism f ∶X → Y is 0-Artin (or simply representable) if for every
V ∈ Spc and every morphism V → Y , the fibred product X ×Y V is
0-Artin.

(ii) A 0-Artin morphism f ∶X → Y is smooth if for every Y ∈ Spc and every
morphism V → Y , the base change X ×Y V → V is smooth.

(iii) A topological stack X is 1-Artin if its diagonal ∆X ∶ X → X ×X is
0-Artin, and there exists U ∈ Spc and a morphism8 p ∶ U ↠X which is
a smooth surjection.

(iv) If Y is a space and X is 1-Artin, a morphism f ∶ X → Y is smooth if
there exists a space U and a smooth surjection p ∶ U ↠X such that
f ○ p ∶ U → Y is a smooth morphism of spaces.

5Combining the discussion in Subsects. 2.4, 2.5 (particularly Remark 2.10), and 3.2,
one can see that the definition proposed by Joyce is a quotient of ours.

6to be precise: in any topological weave in the sense of [Kha4, Kha5]
7We will never use this term to refer to differentiable structures.
8which is automatically 0-Artin when ∆X is 0-Artin
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Iterating this inductively9, we define k-Artin stacks and (smooth) k-Artin
morphisms for all k ⩾ 0. We say X is Artin if it is k-Artin for some k, and a
morphism is Artin if it is representable by Artin stacks.

1.1.3. Since properness for morphisms of topological spaces is local on the
target, we can extend this notion to topological Artin stacks as follows.

A 0-Artin morphism f ∶X → Y is proper if for any morphism V → Y with
V ∈ Spc, the base change X ×Y V → V is a proper morphism of spaces.

A 1-Artin morphism f ∶ X → Y is proper if for any morphism V → Y
with V ∈ Spc, there exists an (automatically 0-Artin) proper surjection
Z ↠X ×Y V with Z ∈ Spc such that Z → V is proper.

1.1.4. The analogous definitions make sense also in the algebraic and complex
analytic categories.

The complex analytification functor sends an algebraic space, locally of
finite type over the field k of complex numbers, to its space of k-points.
This extends uniquely to a colimit-preserving functor sending locally of finite
type k-stacks in the algebraic category to stacks in the complex analytic or
topological category.

This functor preserves Artin stacks, Artin morphisms, smooth morphisms,
vector bundles, and proper representable morphisms.

While our definition of proper morphisms of 1-Artin stacks is not the
standard one in the algebraic category (cf. [SP, Tag 0CL4]), it follows from
[Ols, Thm. 1.1] and [SP, Tags 0CL3, 06TZ, 06U7, 0DTL] that they agree;
hence proper morphisms of 1-Artin stacks are also preserved by complex
analytification.

When the discussion does not depend on any particular context, we will
use the terms space and stack agnostically. For example, when read in the
algebraic category, space will mean “algebraic space locally of finite type over
k”.

1.2. Sheaves.

1.2.1. Fix a commutative ring of coefficients Λ. For a topological space X,
we denote by Shv(X) the derived ∞-category of sheaves of Λ-modules on
X.10 We extend Shv(−) to topological stacks by lisse extension, as in [Kha5,
§8]. Thus for a topological stack X, we have

Shv(X) ≃ lim
←Ð
(S,s)

Shv(S) (1.1)

9noting at each point that if X has (n − 1)-representable diagonal, then any morphism
U →X from a space U is automatically (n − 1)-representable

10Equivalently, Shv(X) is the ∞-category of sheaves on X with values in the derived
∞-category of Λ-modules. More generally, one can take Λ to be an E∞-ring spectrum, and
Shv(X) to be the ∞-category of sheaves of Λ-module spectra on X.
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where the limit of ∞-categories is taken over pairs (S, s) with S ∈ Spc and
s ∶ S → X a morphism. If X is Artin, it is enough to take pairs where s is
smooth.

1.2.2. We may also perform the lisse extension within the algebraic or
complex analytic categories. For example, if X is a stack in the algebraic
category, we have

Shv(X) ∶= lim
←Ð
(S,s)

Shv(S)

where the limit is taken over pairs (S, s) with S a locally of finite type
algebraic space (or scheme) and s ∶ S → X a morphism in the algebraic
category. For X Artin, we may again require s to be smooth. See [Kha5,
§3.2].

There is a natural equivalence Shv(X) ≃ Shv(Xtop
), where Xtop is the

underlying topological stack (1.1.4). This follows from the fact that X ↦Xtop

preserves colimits, and that X ↦ Shv(X) sends colimits of stacks to limits of
∞-categories (see [Kha5, §3.2]).

1.2.3. The six functor formalism is summed up as follows. By the discussion
in (1.1.4) and (1.2.2), it may be read in any of the topological, complex
analytic, or algebraic categories according to the reader’s preference.

Theorem 1.2. The assignment X ↦ Shv(X) defines a topological weave in
the sense of [Kha4, Kha5]. In particular, we have:

(i) Tensor and Hom. For every stack X, there is a closed symmetric
monoidal structure on Shv(X). In particular, there are adjoint bifunc-
tors (⊗,Hom). The monoidal unit is the constant sheaf ΛX ∈ Shv(X).

(ii) *-Functoriality. For every morphism f ∶ X → Y , there is a pair of
adjoint functors

f∗ ∶ Shv(Y )→ Shv(X), f∗ ∶ Shv(X)→ Shv(Y ).

The functor f∗ (resp. f∗) is symmetric monoidal (resp. lax symmetric
monoidal). The assignments f ↦ f∗, f ↦ f∗ are compatible with
composition up to coherent homotopy.

(iii) !-Functoriality. For every Artin morphism f ∶X → Y , there is a pair of
adjoint functors

f! ∶ Shv(X)→ Shv(Y ), f !
∶ Shv(Y )→ Shv(X).

The assignments f ↦ f!, f ↦ f ! are compatible with composition up to
coherent homotopy.

(iv) Base change. For every Artin morphism f ∶ X → Y , the operation f!
commutes with ∗-inverse image. Dually, f ! commutes with ∗-direct
image.

(v) Projection formula. Let f ∶ X → Y be an Artin morphism. For every
object F ∈ Shv(X) and every object G ∈ Shv(Y ), there are canonical
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isomorphisms

f!(F )⊗ G → f!(F ⊗ f∗(G )),

Hom(f!(F ),G )→ f∗Hom(F , f !
(G )),

f !Hom(F ,G )→ Hom(f∗(F ), f !
(G )).

(vi) Forgetting supports. For every 1-Artin morphism f ∶ X → Y with
proper diagonal, there is a natural transformation αf ∶ f! → f∗ which is
compatible with composition up to coherent homotopy. Moreover, it
is invertible if f is proper and representable, or a proper morphism of
1-Artin stacks.

(vii) Localization. Let X be an Artin stack and let i ∶ Z →X and j ∶ U →X
be a complementary pair of closed and open immersions, respectively.11

Then there are exact triangles of functors

j!j
∗
→ id→ i∗i

∗,

i∗i
!
→ id→ j∗j

!.

(viii) Homotopy invariance. Let X be a stack and π ∶ E →X be the projection
of a vector bundle. Then the natural transformations

id→ π∗π
∗,

π!π
!
→ id,

are invertible.

(ix) Thom twist. Let f ∶ X → Y be a smooth Artin morphism. Denote
by ∆ ∶ X → X ×Y X and pr2 ∶ X ×Y X → X the diagonal and second
projection, respectively. Then the assignment

F ↦F ⟨−Tf ⟩ ∶=∆
!pr∗2(F )

determines a Shv(X)-linear auto-equivalence of Shv(X), whose inverse
we denote F ↦F ⟨Tf ⟩.12

(x) Poincaré duality. Let f ∶X → Y be an Artin morphism. If f is smooth,
then there is a canonical isomorphism of functors

f !
(−) ≃ f∗(−)⟨Tf ⟩.

In particular, ωX/Y ∶= f
!
(ΛY ) ≃ ΛX⟨Tf ⟩ is ⊗-invertible.

11The open complement U =X ∖Z is by definition the subfunctor of X whose T -points
are T → X for which T ×X Z = ∅ (for every T ∈ Spc). That is to say, it is the largest
substack of X that doesn’t intersect U . It is easy to see that the morphism U →X is an
open immersion.

12In the topological category, “Tf ” is here just a symbol. The notation is meant to
suggest that but one should think of ΛX⟨Tf ⟩ as the Thom sheaf of the relative tangent
microbundle of f . In the algebraic or complex analytic (or even C1) categories, ΛX⟨Tf ⟩

can indeed be identified with the Thom sheaf of the relative tangent bundle Tf , via a
deformation to the normal bundle argument.
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1.2.4. Let f ∶X → Y be a smooth morphism of relative dimension d between
Artin stacks. An orientation of f is a trivialization ΛX⟨Tf ⟩ ≃ ΛX[d]. (Note
that this depends on the coefficient ring Λ.) Given an orientation, Poincaré
duality reads f !

≃ f∗⟨d⟩.

For example, any smooth morphism of Artin stacks in the algebraic or
complex analytic categories admits a canonical orientation.13

1.2.5. For any cartesian square of stacks

X ′ Y ′

X Y

g

p q

f

where q is an Artin morphism, we have in addition to the base change
isomorphisms

Ex∗! ∶ q
∗f! ≃ g!p

∗, Ex!
∗
∶ q!f∗ ≃ g∗q

!,

further exchange transformations

Ex∗
∗
∶ q∗f∗ → g∗p

∗, Ex∗,! ∶ g∗q! → p!f∗,

see [Kha5, §A.2], which also become invertible in certain situations:

(a) Whenever we have the forgetting supports isomorphism f! ≃ f∗ (and
similarly for g), one deduces that Ex∗

∗
is invertible. (For example,

when f and g are proper morphisms of 1-Artin stacks.)

(b) When p and q are smooth and hence satisfy Poincaré duality, one
deduces that Ex∗

∗
and Ex∗,! are invertible.

1.2.6. We also have the following descent statements for the weave Shv(−):

Proposition 1.3 (Descent). Let p ∶ Y →X be an Artin morphism and denote
by Y● its Čech nerve.

(i) Smooth descent. Consider the canonical functor of ∞-categories

Shv(X)→ Tot(Shv(Y●)),

where Tot(−) denotes the totalization (homotopy limit), with transition
functors given by ∗-inverse image (resp. by !-inverse image). If p is a
smooth surjection, then this is an equivalence.

(ii) Proper descent. Consider the canonical functor of ∞-categories

Ŝhv(X)→ Tot(Ŝhv(Y●)),

13An orientation of f amounts to a Thom isomorphism for Tf (in view of Footnote 12).
If Λ is an E∞-ring spectrum equipped with a complex orientation, such as the Eilenberg–
MacLane spectrum for an ordinary commutative ring, the complex orientation determines
compatible Thom isomorphisms for all complex vector bundles.
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where the transition functors are given by ∗-inverse image and Ŝhv(−)
denotes the left completion14 of Shv(−) with respect to the cohomologi-
cal t-structure15. If p is a proper representable surjection, then this is
an equivalence.

1.2.7. Proof of Theorem 1.2 and Proposition 1.3. See [Kha5, §7.1] and [Kha5,
§8.3] for the construction of the weave Shv(−) in the algebraic and topological
categories, respectively (and [Kha5, Cor. 3.4.9] for the abstract statement).
In particular, parts (i), (ii), (iii), (iv), (v), (ix), and (x) of Theorem 1.2 are
proven there, as well as Proposition 1.3(i). Using Proposition 1.3(i) and
(1.2.5), parts (vii) and (viii) of Theorem 1.2 then reduce to the case of spaces.
Similarly, Proposition 1.3(ii) reduces16 to the case of proper morphisms of
topological spaces, proven in [Hai, Cor. 2.8].

Theorem 1.2(vi) is only proven for representable morphisms in [Kha5, §8.3].
Let us construct αf ∶ f! → f∗ for f ∶ X → Y a 1-Artin morphism whose
diagonal ∆ is proper. Since ∆ is representable, we have the isomorphism
α∆ ∶∆! ≃∆∗. By base change (Theorem 1.2(iv)) for the cartesian square

X ×Y X X

X Y

pr2

pr1 f

f

we get the natural transformation

f∗f! ≃ pr2,!pr
∗

1
unit
ÐÐ→ pr2,!∆!∆

∗pr∗1 ≃ id, (1.4)

whence αf ∶ f! → f∗ by transposition.

Now suppose f ∶ X → Y is a proper morphism of 1-Artin stacks and
let us show that αf is invertible. Choose a smooth surjection v ∶ V ↠ Y
where V ∈ Spc. By Proposition 1.3(i), it is enough to show that v∗f! → v∗f∗
is invertible. Since f! (resp. f∗) commutes with arbitrary (resp. smooth)
∗-inverse image (1.2.5), we may replace Y by V and thereby reduce to the
case where Y ∈ Spc. By definition of properness of f , there exists a proper
surjection g ∶ Z ↠ X where Z ∈ Spc and g ○ f ∶ Z → Y is proper. By
Proposition 1.3(ii) we have descent along the Čech nerve g● ∶ Z● →X of g, so
it will suffice to show that

αf ∶ f!gn,∗g
∗

n → f∗gn,∗g
∗

n

is invertible for each n. This follows from the compatibility of α with
composition, the isomorphisms αgn,∗ ∶ gn,! → gn,∗, and the isomorphisms
αf○gn,∗ ∶ (f ○ gn)! → (f ○ gn)∗.

14So when X is a topological space, Ŝhv(X) is the completed derived ∞-category of
sheaves of abelian groups on X. See e.g. [Hai, §1.2] or [Lur, §C.5.9]. The canonical
functor Shv(X)→ Ŝhv(X) is an equivalence when X is a CW complex, and is always an
equivalence on eventually coconnective (homologically bounded above) objects.

15extended to topological Artin stacks as in [KR, Prop. 4.3], i.e. by imposing that
smooth ∗-inverse image is t-exact.

16Note that left completion commutes with lisse extension for Artin stacks, since
∗-inverse image along smooth morphisms are t-exact, as in (1.1).
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2. Homology

2.1. Definition. As before, we fix a commutative ring17 of coefficients Λ,
and work in either the topological, complex analytic, or algebraic category.
Let f ∶X → S be an Artin morphism of stacks and ΛS ∈ Shv(S) the constant
sheaf.

We define the following objects of Shv(S):

(i) Cochains: C●(X/S ; Λ) ∶= f∗f
∗
(ΛS).

(ii) Compactly supported cochains: C●c(X/S ; Λ) ∶= f!f
∗
(ΛS).

(iii) Borel–Moore chains: CBM
●
(X/S ; Λ) ∶= f∗f

!
(ΛS).

(iv) Chains: C●(X/S ; Λ) ∶= f!f
!
(ΛS).

We denote their respective complexes of (derived) global sections by

C●(X/S ; Λ), C●c(X/S ; Λ), CBM
●
(X/S ; Λ), C●(X/S ; Λ),

respectively, and their respective cohomology groups by

H∗(X/S ; Λ), H∗c(X/S ; Λ), HBM
−∗
(X/S ; Λ), H−∗(X/S ; Λ).

We leave the coefficient Λ implicit when there is no risk of ambiguity. When
S = pt, we omit the decoration /S . By adjunction, we may write

C●(X/S ; Λ) ≃ Γ(X,ΛX) ≃ C
●
(X; Λ),

CBM
●
(X/S ; Λ) ≃ Γ(X,ωX/S)

where ΛX ≃ f
∗
(ΛS) and ωX/S ∶= f

!
(ΛS).

2.2. Operations. The various compatibilities between the six operations
give rise to the expected operations on (Borel–Moore) homology. We record
these for the sheaves C●(X/S) and CBM

●
(X/S), leaving the ring of coefficients

Λ implicit in the notation.

2.2.1. Forgetting supports. If f ∶X → S is a morphism of 1-Artin stacks with
proper diagonal, then αf ∶ f! → f∗ induces a map

C●(X/S)→ CBM
●
(X/S)

which is invertible if Y → S is proper.

2.2.2. Products. Let f ∶X → Y and g ∶ Y → S be Artin morphisms. We have
the operations of composition product :

○ ∶ g∗C●(X/Y )⊗ C●(Y/S)→ C●(X/S), (2.1)

○ ∶ g∗C
BM
●
(X/Y )⊗ CBM

●
(Y/S)→ CBM

●
(X/S). (2.2)

Taking f = g = id, these become the cup product on cochains:

∪ ∶ C●(Y )⊗ C●(Y )→ C●(Y ), (2.3)

17and also as before, one can take more generally an E∞-ring spectrum



EQUIVARIANT HOMOLOGY OF STACKS 9

via which C●(Y ) becomes an E∞-algebra in Shv(Y ). Taking f = id, they
become the cap products:

∩ ∶ g∗C
●
(Y )⊗ CBM

●
(Y/S)→ CBM

●
(Y/S), (2.4)

∩ ∶ g∗C
●
(Y )⊗ C●(Y/S)→ C●(Y/S), (2.5)

via which CBM
●
(Y/S) and C●(Y/S) are modules over g∗C

●
(Y ) for any Artin

morphism g ∶ Y → S.

We recall the construction of (2.1); that of (2.2) is similar. It comes from
a natural transformation

g∗f!f
!g∗(−)⊗ g!g

!
(−)→ (g ○ f)!(g ○ f)

!
(−) (2.6)

defined as the composite

g∗f!f
!g∗(−)⊗ g!g

!
(−) ≃ g!(g

∗g∗f!f
!g∗(−)⊗ g!(−))

→ g!(g
!
(−)⊗ f!f

!g∗(−))

≃ g!f!(f
∗g!(−)⊗ f !g∗(−))

→ g!f!(f
!
(g∗(−)⊗ g!(−)))

→ g!f!(f
!g!(−))

≃ (g ○ f)!(g ○ f)
!
(−),

where the (iso)morphisms are: the projection formula for g!; the unit id →

g∗g∗; the projection formula for f!; the exchange transformation Ex∗,!
⊗
∶

f∗(−)⊗ f !
(−)→ f !

(− ⊗ −); and the exchange transformation Ex∗,1
⊗
∶ g∗(−)⊗

g!(−)→ g!(− ⊗ −). (See [Kha5, A.1.2] for the definition of the latter two.)

2.2.3. Functoriality: change of base. Let p ∶ S′ → S be a morphism of stacks.
For any Artin morphism X → S, the unit id→ p∗p

∗ induces maps

C●(X/S)→ C●(XS′/S′),

CBM
●
(X/S)→ CBM

●
(XS′/S′),

where XS′ =X ×S S
′.

2.2.4. Functoriality: direct image. Let f ∶X → Y be a morphism of relatively
Artin stacks over a stack S. The counit f!f

!
→ id induces a map

f∗ ∶ C●(X/S)→ C●(Y/S).

If f is a proper morphism of 1-Artin stacks, so that f∗ ≃ f!, then f∗f
!
≃ f!f

!
→

id induces a map
f∗ ∶ C

BM
●
(X/S)→ CBM

●
(Y/S).

2.2.5. Functoriality: Gysin. Let f ∶ X → Y be a smooth Artin morphism
of relative dimension d over a stack S. The Poincaré duality isomorphism
f∗⟨Tf ⟩ ≃ f

! yields a natural transformation id→ f∗f
∗
≃ f∗f

!
⟨−Tf ⟩, whence a

map
f !
∶ CBM
●
(Y/S)→ CBM

●
(X/S)⟨−Tf ⟩,



10 A.A. KHAN

where by abuse of notation we write, with p ∶X → S the structural morphism,

CBM
●
(X/S)⟨−Tf ⟩ ∶= p∗⟨−Tf ⟩p

!
(ΛS).

Recall that we may trivialize ⟨−Tf ⟩ ≃ [−d] given a suitable orientation of f .

Combining this with the isomorphism αf ∶ f! → f∗ when f is moreover
proper with X and Y 1-Artin, we have the natural transformation id →
f∗f

∗
≃ f!f

!
⟨−Tf ⟩ which yields a map

f !
∶ C●(Y/S)→ C●(X/S)⟨−Tf ⟩.

2.2.6. Fundamental class. Let f ∶X → S be a smooth Artin morphism. The
relative fundamental class

[X/S] ∈ C
BM
●
(X/S)⟨−Tf ⟩

is the image of 1 ∈ C●(S) ≃ CBM
●
(S/S) by the Gysin map f !

∶ CBM
●
(S/S) →

CBM
●
(X/S)⟨−Tf ⟩.18.

2.2.7. Virtual functoriality. Let us work in the C∞-category; we refer to [Ste]
for background on (derived) C∞-stacks. Given a derived C∞-stack X and
π ∶ E →X a C∞-vector bundle, we consider the construction19

F ⟨−E⟩ ∶= 0!π∗(ΛX)

as an endofunctor in F ∈ Shv(X), where 0 ∶X → E denotes the zero section.
This is an auto-equivalence (as can be checked locally) and we denote its
inverse by F ↦F ⟨E⟩. As in [Kha4, §2.6], compatibility with exact sequences
of vector bundles implies that this extends to a canonical homomorphism

K0(Perf(X))→ Shv(X)

from the Grothendieck group of perfect complexes on X to the Picard group
of ⊗-invertible objects of Shv(X).

Now let f ∶ X → Y be a quasi-smooth morphism of derived C∞-stacks
(see again [Ste] for a reference for quasi-smoothness in this context). The
relative cotangent complex is perfect and gives rise to a Thom twist ⟨T vir

f ⟩ on
Shv(X). One can define in this situation a canonical natural transformation,
the virtual Gysin transformation

gysf ∶ f
∗
(−)⟨T vir

f ⟩→ f !
(−),

which reduces to the Poincaré duality isomorphism f !
≃ f∗(−)⟨Tf ⟩ when f is

smooth. See [Kha1, §3.1] for the construction of gysf in the algebraic category;

18Here x ∈ CBM
● (X)⟨−Tf ⟩ is shorthand for any of the following equivalent things: a

morphism x ∶ ΛX → CBM
● (X)⟨−Tf ⟩ in Shv(X); a morphism x ∶ Λ → CBM

● (X)⟨−Tf ⟩ in the
derived ∞-category of Λ-modules; an object of the ∞-groupoid underlying the complex
CBM
● (X)⟨−Tf ⟩.
19where Shv(−) and the various operations are defined via underlying topological stacks
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the same works word-for-word in the complex analytic and C∞-categories,
see e.g. [PY2, §4].20

Now, as in (2.2.5), gysf gives rise to virtual Gysin maps:

f !
vir ∶ C

BM
●
(Y/S)→ CBM

●
(X/S)⟨−T

vir
f ⟩

when X and Y are defined over some base S. In particular, taking Y = S we
get the (relative) virtual fundamental class

[X/S]
vir
∶= f !

vir(1) ∈ C
BM
●
(X/S)⟨−T

vir
X/S⟩.

If f is moreover proper with X and Y 1-Artin, we also have

f !
vir ∶ C●(Y/S)→ C●(X/S)⟨−T

vir
f ⟩.

For example, the above discussion applies to any quasi-smooth Artin
morphism of derived stacks in the algebraic or complex analytic categories (see
e.g. [Kha3] or [PY1] for some background on derived stacks in the respective
contexts). In that case, the canonical orientation of f yields a canonical
trivialization ⟨T vir

f ⟩ ≃ [2d] where d is the relative complex dimension.21

2.3. Properties. The following statements immediately follow from various
parts of Theorem 1.2.

Theorem 2.7. Let S be a stack and f ∶X → S an Artin morphism.

(i) Localization. For any closed immersion i ∶ Z ↪X with complementary
open immersion j ∶ U ↪X, there are exact triangles in Shv(S).

CBM
●
(Z/S)

i∗
Ð→ CBM

●
(X/S)

j!

Ð→ CBM
●
(U/S),

C●(U/S)
j∗
Ð→ C●(X/S)→ C●((X,U)/S),

where C●((X,U)/S) = f!i!i
∗f !
(ΛS) is the complex of relative chains on

(X,U) over S.

(ii) Homotopy invariance. For any vector bundle π ∶ E →X of rank r, the
maps in Shv(S)

π!
∶ CBM
●
(X/S)→ CBM

●
(E/S)⟨−Tπ⟩,

π∗ ∶ C●(E/S)→ C●(X/S)

are invertible.

(iii) Poincaré duality. If f ∶ X → S is smooth, cap product with the
fundamental class induces a canonical isomorphism in Shv(S).

(−) ∩ [X/S] ∶ C
●
(X/S)→ CBM

●
(X/S)⟨−TX/S⟩.

20In fact, the construction does not require the full data of a derived structure on
f ∶X → Y . The latter determines in particular a closed immersion of the intrinsic normal
cone CX/Y into the virtual normal bundle Nvir

X/Y , and this linear shadow of the derived
structure is enough: see [Kha2, Varnt. 2.4] or [Kha1, §3.3].

21If Λ is an E∞-ring spectrum, as opposed to an ordinary commutative ring, we need a
complex orientation on Λ here.



12 A.A. KHAN

(iv) Smooth descent. For any smooth surjective Artin morphism p ∶ Y →X
with Čech nerve Y●, there are canonical isomorphisms in Shv(S)

CBM
●
(X/S) ≃ lim

←Ð
[n]∈∆

CBM
●
(Yn/S)⟨−TYn/X⟩,

C●(X/S) ≃ lim
Ð→

[n]∈∆op

C●(Yn/S).

(v) Proper descent. Suppose that the relative dualizing complex ωX/S =

f !
(ΛS) is eventually coconnective (e.g., X → S is a relative CW complex

locally on the source and target). For any proper surjective morphism
p ∶ Y →X with Čech nerve Y●, there are canonical isomorphisms

CBM
●
(X/S) ≃ lim

Ð→
[n]∈∆op

CBM
●
(Yn/S),

C●(X/S) ≃ lim
Ð→

[n]∈∆op

C●(Yn/S)

in Shv(S).

2.4. Homology and homotopy types. We define the homotopy type of
a topological stack, cf. [Sim, Bla, Noo]. Denote by H the ∞-category of
homotopy types (a.k.a. ∞-groupoids). We have the tautological functor

Spc→H, X ↦ ∣X ∣,

which exhibits its target as the ∞-categorical localization at weak homotopy
equivalences. By left Kan extension, this extends uniquely to a colimit-
preserving functor

Spc→H, X ↦ ∣X ∣.

In particular, ∣X ∣ is canonically presented as the homotopy colimit

∣X ∣ ≃ lim
Ð→
(S,s)

∣S∣

taken over pairs (S, s) with S ∈ Spc and s ∶ S →X a morphism.

For a topological stack X, the complex of chains C●(X) can be described
in terms of its homotopy type ∣X ∣ ∈H. Recall first of all that on topological
spaces, the functor X ↦ C●(X) descends to a functor

CH
●
(−) ∶H→D(Λ)

valued in the derived ∞-category of Λ-modules (where Λ is the ring of
coefficients), since it inverts weak homotopy equivalences.

The following is a tautological reformulation of smooth codescent for
C●(−) ∶ Stk→D(Λ) (Theorem 2.7(iv)).

Proposition 2.8. For every topological stack X, there is a canonical natural
isomorphism

C●(X) ≃ C
H
●
(∣X ∣)

in D(Λ).
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Proof. By construction, the left-hand triangle and outer composite in the
following diagram commute:

Spc Stk D(Λ)

H
∣−∣

C●

∣−∣

CH●

Theorem 2.7(iv) implies that C●(−) ∶ Stk→D(Λ) is also left Kan extended
from Spc. It follows that the right-hand triangle commutes if and only if the
outer one does. □

2.5. Relative homology. If S is a compact topological manifold, then
may describe the complex of relative chains C●(X/S) = aS,∗f!f

!
(ΛS) in more

“absolute” terms:

C●(X/S) ≃ aS,!f!f
!
(ωS⟨−TS⟩) ≃ C●(X)⟨−TS⟩.

More generally, using chains on pairs as in Theorem 2.7(i), we have:

Lemma 2.9. Let S be a topological manifold of dimension d and f ∶X → S
a topological Artin stack over S. There is a canonical isomorphism in D(Λ)

C●(X/S) ≃ lim
←Ð
K⊆S

C●(X,X ∖XK)⟨−TS⟩,

where the limit is over compact subsets K ⊆ S and XK =X ×S K ⊆X.22

Proof. We have C●(X/S) ≃ aS,∗f!f !a!SΛ⟨−TS⟩. Using the equivalence Shv(S)→
lim
←ÐK⊆S

Shv(K) (via ∗-inverse image) and base change for the squares

XK X

K S,

iX

fK f

i

we can write

f!f
!a!SΛ ≃ lim

←Ð
K

i∗i
∗f!f

!a!SΛ ≃ lim
←Ð
K

i∗fK,!i
∗

Xf !a!SΛ.

Thus aS,∗f!f
!a!SΛ is the limit over K of

aS,∗i∗fK,!i
∗

Xf !a!SΛ ≃ aS,!i!fK,!i
∗

Xf !a!SΛ ≃ aX,!iX,!i
∗

Xa!XΛ ≃ C●(X,X ∖XK)

using the fact that aK = aS ○ i is proper and that aS ○ i ○ fK = aX ○ iX . □

Remark 2.10. Assume for simplicity that S is an oriented C∞-manifold
of dimension d (so that ⟨−TS⟩ ≃ [−d]). At the level of homology groups,
Lemma 2.9 means that there are canonical surjections

Hn(X/S)↠ lim
←Ð
K⊆S

Hn+d(X,X ∖XK)

22Since S is Hausdorff (by convention), K ↪ S is a closed immersion. Hence XK ↪X
is a closed immersion by base change, and X ∖XK is the complementary open immersion
as in Footnote 11.
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with generally nontrivial kernels

lim
←Ð
K

1Hn+d+1(X,X ∖XK).

Compare [Spa, Thm. 7.3].

3. Equivariant homology

3.1. Definition. Let G be a group acting on an Artin stack X.23 Consider
the projection

f ∶ [X/G]→ BG ∶= [pt/G]

from the quotient stack to the classifying stack.24 For every commutative
ring Λ, the complexes of G-equivariant (Borel–Moore) chains on X, denoted
by

CG
●
(X) ∶= C●([X/G]/BG), CBM,G

●
(X) ∶= C●([X/G]/BG),

are the (derived) global sections of the objects

CG
●
(X) ∶= C●([X/G]/BG) ∶= f!f

!
(ΛBG),

CBM,G
●

(X) ∶= CBM
●
([X/G]/BG) ∶= f∗f

!
(ΛBG),

of Shv(BG).

3.1.1. Since aBG ∶ BG→ pt is smooth with ⟨−TBG⟩ ≃ ⟨TG⟩, we have ΛBG ≃

ωBG⟨TG⟩ by Poincaré duality. Thus

aBG,∗f∗f
!
(ΛBG) ≃ aBG,∗f∗f

!a!BG(Λ)⟨TG⟩,

or in other words, CBM,G
● (X) ≃ CBM

●
([X/G])⟨TG⟩.

3.1.2. For homology, we get the less clean description

CG
●
(X) = aBG,∗f!f

!
(ΛBG) ≃ aBG,∗f!f

!a!BG(Λ)⟨TG⟩.

When aBG ∶ BG → pt is not proper25, this cannot be identified with
C●([X/G])⟨TG⟩.

3.2. The Borel construction. We will now relate our definitions of equi-
variant (Borel–Moore) homology to a model for the Borel construction. To
avoid orientation issues, we will work in the complex analytic or algebraic
categories for simplicity.

Say a space A is k-acyclic if for every eventually coconnective complex
K ∈ Shv(pt), the unit K → a∗a

∗
(K) is k-coconnective, where a ∶ A → pt is

the projection. Let (EnG)n be a sequential diagram of oriented C∞-manifolds
with free G-action such that for every integer k > 0, EnG is k-acyclic for
sufficiently large n.

23As before, “stack” can be read in the topological, complex analytic, or algebraic
category as preferred, and the same goes for “group” (it does not mean “discrete group”).

24See e.g. [Kha3, §4] for the definition of group actions on higher stacks and their
quotient stacks.

25This amounts to compactness of G. For example, the complex analytification of a
linear algebraic group will be compact if and only if it is finite.
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For example, if G is a linear algebraic group, then the construction of [Tot,
Rem. 1.4] provides an example of such an (EnG)n by [KR, Prop. 4.15].26

Note that the freeness assumption means that the quotient stacks27 BnG ∶=
[EnG/G] have trivial stabilizers28. We denote by qn ∶ BnG → BG the
projections.

Proposition 3.1. For every F ∈ Shv(BG), the canonical morphism F →
lim
←Ðn

qn,∗q
∗

n(F ) is invertible.

Corollary 3.2. Let X be an Artin stack with G-action. Then the canonical
maps in Shv(BG)

CBM,G
●

(X)→ lim
←Ð
n

CBM
●
(X

G
×EnG)[−dn + g]

CG
●
(X)→ lim

←Ð
n

qn,∗C●(X
G
×EnG/BnG)

are invertible, where dn is the dimension of BnG and g = dim(G).

Proof. Applying Proposition 3.1 to F = CBM,G
● (X) = f∗f

!
(ΛBG), where

f ∶ [X/G]→ BG, yields

f∗f
!
(ΛBG) ≃ lim

←Ð
n

qn,∗q
∗

nf∗f
!
(ΛBG).

Using the Poincaré duality isomorphism q∗n ≃ q
!
n[−dn] and the base change

formula, we may write

qn,∗q
∗

nf∗f
!
(ΛBG) ≃ qn,∗fn,∗f

!
nq

!
n(ΛBG)[−dn]

where fn ∶X ×
GEn → BnG is the base change of f . Translating back, this is

CBM,G
●

(X
G
×EnG)[−dn] ≃ C

BM
●
(X

G
×EnG)[−dn + g]

by (3.1.1).

Similarly, Proposition 3.1 expresses F = CG
●
(X) = f!f

!
(ΛBG) as the limit

over n of

qn,∗q
∗

nf!f
!
(ΛBG) lim

←Ð
n

qn,∗fn,!f
!
nq

!
n(ΛBG)[−dn] lim

←Ð
n

qn,∗fn,!f
!
n(ΛBnG).

Translating back, this is C●(X ×
GEnG/BnG). □

The proof of Proposition 3.1 involves some analysis using the cohomological
t-structure on Shv(X) (see Footnote 15). Given a sequential diagram {fn ∶
An → S}n of Artin stacks, we say that {fn}n is k-pro-acyclic if for every
eventually coconnective F ∈ Shv(S), there exists an index N such that the

26See also [BL, §3.1] for a construction when G is a Lie group with finitely many
components.

27The quotients can be formed in the C∞ category, as the “associated topological stack”
functor is colimit-preserving. Similarly, if X and G are algebraic or complex analytic, then
the quotients could be taken equivalently in the corresponding category.

28and are Hausdorff (even manifolds) when G acts properly on EnG (e.g. if G is
compact).
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unit map F → fn,∗f
∗

n(F ) has k-coconnective fibre for all n ⩾ N . We make
the following three observations:

(a) If {fn}n is k-pro-acyclic, then the induced map F → lim
←Ðn

fn,∗f
∗

n(F )

has k-coconnective fibre. Indeed, coconnectivity is stable under limits.

(b) If {fn}n is k-pro-acyclic, then any smooth base change is k-pro-
acyclic. Indeed, smooth ∗-inverse image is t-exact and commutes
with ∗-direct image (using Poincaré duality and the fact that !-inverse
image commutes with ∗-direct image).

(c) If the base change of {fn}n along a smooth surjection S′↠ S becomes
k-pro-acyclic, then {fn ∶ An → S}n was already pro-acyclic. Indeed,
∗-inverse image along smooth surjections is t-exact and conservative.

Proof of Proposition 3.1. It will suffice to show that {qn}n is k-pro-acyclic
for every k. By base change along the surjective submersion pt↠ BG, this
follows from the assumption that {aEnG ∶ EnG→ pt}n is k-pro-acyclic. □

Passing to hypercohomology groups, the isomorphism of Proposition 3.1
gives rise for every i ∈ Z to a surjective map

Hi
(BG,F )

∼

Ð→ Hi
(BG, lim

←Ð
n

qn,∗q
∗

nF )↠ lim
←Ð
n

Hi
(BG, qn,∗q

∗

nF )

whose kernel is a lim
←Ð

1 term.

Lemma 3.3. If F ∈ Shv(BG) is eventually coconnective, then for every
integer i ∈ Z, there exists a sufficiently large index N such that

Hi
(BG,F )→ Hi

(BG, qn,∗q
∗

nF ) ≃ Hi
(BnG, q∗nF )

is invertible for all n ⩾ N .

Proof. As explained in [KR, Rem. 4.10], this is a consequence of the fact that
{qn}n is k-pro-acyclic for all k. □

Corollary 3.4. Let X be an Artin stack with G-action. Then for every
integer i ∈ Z there exists a sufficiently large index N such that the map

HG
i (X)→ Hi (BnG,fn,!f

!
n(ΛBG)) ≃ Hi(X

G
×EnG/BnG)

is invertible for all n ⩾ N , where fn ∶X ×
GEnG→ BnG is the base change of

f ∶ [X/G]→ BG. If the dualizing complex ωX is eventually coconnective29,
then similarly the map

HBM,G
i (X)→ HBM

i+dn−g (X
G
×EnG)

is invertible for all n ⩾ N .

Proof. To apply Lemma 3.3, we need to check that the sheaves f∗f !
(ΛBG) and

f!f
!
(ΛBG) are eventually coconnective. Note that f!, f∗ and f ! all commute

with smooth ∗-inverse image (see (1.2.5) for the latter two). Since ∗-inverse

29In the algebraic category, if X is an Artin stack of finite dimension in the sense of
[SP, Tag 0AFL], then ωX is eventually coconnective by [KR, Thm. 4.4].
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image along pt↠ BG is t-exact and conservative, it will thus suffice to check
the eventually coconnectivity of CBM

●
(X) and C●(X) instead.

For C●(X), recall that by smooth codescent (Theorem 2.7(iv)), C●(−) is
left Kan extended from spaces. Since connectivity is stable under colimits, we
reduce to the case where X is a space, which is clear e.g. from the singular
chain complex model of C●(X).

For CBM
●
(X), the claim follows from the assumption that the dualizing

complex ωX is eventually coconnective, since formation of global sections is
always left t-exact. □
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